Hollow microsphere combined with optical harmonic Vernier effect for strain and temperature discrimination

in: Optics & Laser Technology (2020)
Gomes, André D.; Ferreira, Marta Sofia; Bierlich, Jörg; Kobelke, Jens; Rothhardt, Manfred; Bartelt, Hartmut; Frazão, Orlando
Achieving a new generation of enhanced sensors requires the development of structures that result from the fusion of different concepts and effects. In this paper, we combine a special strain sensing structure with an optical sensitivity magnification, through harmonics of the Vernier effect. The recently demonstrated harmonics of the Vernier effect result from increasing the optical path length (OPL) of one of two interferometers by multiple times the OPL of the other interferometer. The effect generates higher magnification factors, proportional to the order of the harmonics. The sensing structure is demonstrated for strain and temperature discrimination, allowing compensation for temperature fluctuations. We explore the complex case of the optical Vernier effect in series, where both interferometers are used as sensing interferometers (no reference interferometer is used). Our results also suggest that the magnification enhancement provided by harmonics of the Vernier effect for a configuration in series is the same as for a configuration in parallel: the magnification factor increases proportionally to the order of the harmonics.

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.