Arylic versus Alkylic-Hydrophobic Linkers Determine the Supramolecular Structure and Optoelectronic Properties of Tripodal Amphiphilic Push-Pull Thiazoles

in: Langmuir (2019)
Hupfer, Maximilian L.; Kaufmann, Martin; Roussille, Ludovic; Preiß, Julia; Weiß, Dieter; Hinrichs, Karsten; Deckert, Volker; Dietzek, Benjamin; Beckert, Rainer; Presselt, Martin
The supramolecular structures and their constituents essentially determine the optoelectronic properties of thin films. The introduction of amphiphilicity to the constituents and interface assembly is one established technique to control supramolecular structures and resulting material properties. To yield amphiphilicity, rather hydrophobic chromophores are linked to hydrophilic head groups via flexible alkyl chains. In the present work, we investigate whether replacement of the alkyl linkers by a phenylene linker, that is, replacing an electrically isolating moiety with a potentially semiconducting one, increases the conductivity through the resulting layers. After investigating the influence of the linker on molecular properties of the 2-(4-N,Ndimethylaminophenyl)-4-hydroxy-5-nitrophenyl-1,3 thiazoles exemplarily used in this work, we produce supramolecular structures by means of the Langmuir−Blodgett (LB) technique. Atomic force microscopy (AFM) and UV−vis absorption spectroscopy reveal that thin films made from the more rigid thiazole bearing the arylic linker feature a more homogeneous and stable supramolecular structure as compared to those made from the thiazole dye containing the flexible alkylic linker. Finally, conductive AFM (cAFM) results disclose that the LB films made from the thiazole bearing the π-conjugated arylic linker are less conductive than their counterparts based on the alkylic linkers. In the latter layers, the alkylic linkers provide sufficient motional degrees of freedom to allow for supramolecular rearrangement upon electrical operation during cAFM measurements, hence yielding supramolecular structures featuring increased conductivity with successive cAFM measurements. This work highlights the importance of supramolecular structures for optoelectronic properties by presenting a case where supramolecular effects excel the property changes introduced by molecular modifications.

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.