Ultra-rapid electro-optic sampling of octave-spanning mid-infrared waveforms

in: Optics Express (2021)
Weigel, Alexander; Jacob, Philip; Gröters, David; Buberl, Theresa; Huber, Marinus; Trubetskov, Michael; Heberle, Martin; Pupeza, Ioachim
We demonstrate ultra-rapid electro-optic sampling (EOS) of octave-spanning midinfrared pulses centered at 9 ìm, implemented by mechanically scanning a mirror with a sonotrode resonating at 19 kHz (forward and backward acquisition at 38 kHz). The instrument records the infrared waveform with a spectral intensity dynamic range of 1.6 × 105 for a single scan over a 1.6-ps delay range, acquired within 26 ìs. The purely reflective nature of the delay scanning technique is compatible with broad optical bandwidths, short pulse durations (16 fs, centered at 1030 nm) and high average powers (Watt-level). Interferometric tracking of the sonotrode motion in combination with a predictor-corrector algorithm allows for delay-axis determination with down to single-digit attosecond precision. Ultra-rapid mid-infrared EOS will advance applications such as molecular fingerprinting of static samples as well as tracking of biological processes and chemical reactions and is likely to find new fields of application such as infrared-spectroscopic flow cytometry.

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.