Standardized Electric-Field-Resolved Molecular Fingerprinting

in: Analytical Chemistry (2024)
Huber, Marinus; Trubetskov, Michael; Schweinberger, Wolfgang; Jacob, Philip; Zigman, Mihaela; Krausz, Ferenc; Pupeza, Ioachim
Field-resolved infrared spectroscopy (FRS) of impulsively excited molecular vibrations can surpass the sensitivity of conventional time-integrating spectroscopies, owing to a temporal separation of the molecular signal from the noisy excitation. However, the resonant response carrying the molecular signal of interest depends on both the amplitude and phase of the excitation, which can vary over time and across different instruments. To date, this has compromised the accuracy with which FRS measurements could be compared, which is a crucial factor for practical applications. Here, we utilize a data processing procedure that overcomes this shortcoming while preserving the sensitivity of FRS. We validate the approach for aqueous solutions of molecules. The employed approach is compatible with established processing and evaluation methods for the analysis of infrared spectra and can be applied to existing spectra from databases, facilitating the spread of FRS to new molecular analytical applications.

Third party cookies & scripts

This site uses cookies. For optimal performance, smooth social media and promotional use, it is recommended that you agree to third party cookies and scripts. This may involve sharing information about your use of the third-party social media, advertising and analytics website.
For more information, see privacy policy and imprint.
Which cookies & scripts and the associated processing of your personal data do you agree with?

You can change your preferences anytime by visiting privacy policy.